20 research outputs found

    Controlling Several Atoms in a Cavity

    Full text link
    We treat control of several two-level atoms interacting with one mode of the electromagnetic field in a cavity. This provides a useful model to study pertinent aspects of quantum control in infinite dimensions via the emergence of infinite-dimensional system algebras. Hence we address problems arising with infinite-dimensional Lie algebras and those of unbounded operators. For the models considered, these problems can be solved by splitting the set of control Hamiltonians into two subsets: The first obeys an abelian symmetry and can be treated in terms of infinite-dimensional Lie algebras and strongly closed subgroups of the unitary group of the system Hilbert space. The second breaks this symmetry, and its discussion introduces new arguments. Yet, full controllability can be achieved in a strong sense: e.g., in a time dependent Jaynes-Cummings model we show that, by tuning coupling constants appropriately, every unitary of the coupled system (atoms and cavity) can be approximated with arbitrarily small error

    Least-Squares Approximation by Elements from Matrix Orbits Achieved by Gradient Flows on Compact Lie Groups

    Full text link
    Let S(A)S(A) denote the orbit of a complex or real matrix AA under a certain equivalence relation such as unitary similarity, unitary equivalence, unitary congruences etc. Efficient gradient-flow algorithms are constructed to determine the best approximation of a given matrix A0A_0 by the sum of matrices in S(A1),...,S(AN)S(A_1), ..., S(A_N) in the sense of finding the Euclidean least-squares distance min⁑{βˆ₯X1+...+XNβˆ’A0βˆ₯:Xj∈S(Aj),j=1,>...,N}.\min \{\|X_1+ ... + X_N - A_0\|: X_j \in S(A_j), j = 1, >..., N\}. Connections of the results to different pure and applied areas are discussed
    corecore